3GPP TSG_CN WG5#8

Tdoc N5-000328

Scottsdale, Arizona, USA

18th-20th December, 2000

Source:
Ericsson

Title:
Call Control STD improvements.

Agenda item:

Document for:
Approval

1. Introduction

This contribution shows improvements to the Call Control STDs based on discussion of TD 267, during which it was proposed to introduce a state transition from „1 party in Call“ to „no parties“ in case the first party releases and there are no outstanding routing requests. Furthermore we noticed that the result of digit collection was missing in the STD for the Multi-party call.

Finally in TD 270 it was proposed to introduce an state transition for the case that information could not be retrieved in states „Network Released“ or „Application Released“ for instance because the dialog to the SSF has been aborted should be shown. The original proposal was to associate an invocation of CallFaultDetected operation to this transition. However, it is more appropriate to associate the error indications (superviseCallErr / getCallInfoErr) with this transition.

2 Generic Call Control.

Call Object State Diagram

The state transition diagram shows the application view on the Call object.

[image: image1.wmf]Network Released

Finished

Application

Released

In state Finshed and No Parties a timer

mechanism should prevent that the object

keeps occupying resources. In case the

timer expires, the object should be

destroyed and callFaultDetected should be

reported to the application.

release

deassignCall

timeout ^callFaultDetected("timeout on release")

No Parties

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

release

deassign

createCall

Active

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

Routing to

Destination(s)

2 Parties in

Call

1 Party in

Call

setAdviceOfCharge

superviseCallReq

getCallInfoReq

setCallChargePlan

routeReq[number of routing requests < 2]

"disconnect from called party"[monitor mode = interrupt]

^routeRes, getCallInfoRes, superviseCallRes

IpAppCallControlManager.callEventNotify

IpAppCallControlManager.callEventNotify(Answer from call party)

routeReq[only 1 outstanding routeReq]

routeReq

getMoreDialledDigitsReq[no routeReq outstanding]

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"connection to called party unsuccessful"[no more

outstanding routeReq operations] ^routeRes

"network event received for which

was monitored[routeRes]

"call supervision event" ^superviseCallRes

release

deassignCall

"call ends : called party disconnects"[monitor for this event] ^callEnded, routeRes(party disconnect)

"call ends: calling party abandoned" ^callEnded

"call ends : calling party disconnects" ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"call ends: calling party disconnects"[no monitor for this event] ^callEnded

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

"requested information ready" ^getCallInfoRes,

superviseCallRes

release

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

"requested information

ready" ^getCallInfoRes,

superviseCallRes

[no reports requested with

getCallInfoReq AND

superviseCallReq]

"fault in retrieval of information" ^getCallInfoErr, superviseCallErr

"connection to called party unsuccessful"[monitor mode =

interrupt] ^routeRes

"routing aborted or invalid address" ^routeErr

"answer"

"Digits collected" ^getMoreDialledDigitsRes

"Error in collecting digits" ^getMoreDialledDigitsErr

"party released"

"party released"[no outstanding routing requests]

Figure 1 Application view on the IpCall object
 States

No Parties

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().

Active

In this state a call between two parties is being setup or present. Refer to the substates for more details
The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().

1 Party in Call

In this state there is one party in the call.
In case the call originated from the network the application can now request for more digits in case more digits are needed or the application can request a connection to a called party be established by calling the operation routeReq(). When the calling party abandons the call before the application has invoked the routeReq() operation, the application is informed with callFaultDetected() and also callEnded() will be invoked. When the calling party abandons the call after the application has invoked routeReq() but before the call has actually been established, the gateway informs the application by invoking callEnded().
In case the called party was reached by issueing a routeReq() the application can request a connection to a second call party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party. Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate.
When the second party answers the call, a transition will be made to the 2 Parties in Call state.
In this state user interaction is possible

2 Parties in Call

In this state a successful connection between two parties is established.
In this state user interaction is possible, depending on the underlying network.

Routing to Destination(s)

In this state there is at least one outstanding routeReq.

Network Released

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Finished state is made immediately.

Finished

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

Application Released

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.

3. Multi-party call control

The STD for Multi-party Call Control should likewise be aligned with the STD in 3GPP TS29.198 with respect to:

· Explicit showing of call ended transitions from the Active state to Network Released state.

· Having the „fault detected“ event going from Active to Network Released in stead of going from Active to the destructed state.

Furthermore the event that information could not be retrieved in states „Network Released“ or „Application Released“ for instance because the dialog to the SSF has been aborted should be shown.

5.1 Multi-Party Call State diagrams

The state transition diagram shows the application view on the MultiParty Call object. The diagram is an extension to the state diagram of the Call object in the sense that more than 2 parties are allowed to participate in a call.

[image: image3.wmf]Active

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

routeReq[number active + requested parties < max allowed number

parties in call] / increase number of active + requested parties

Network

Released

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

No Parties

Application

Released

Finished

release

deassignCall

setCallChargePlan

superviseCallReq

getCallInfoReq

setAdviceOfCharge

2 .. n Parties in Call

1 Party in

Call

Routing to

Destination(s)

"disconnect from call party"

[monitor mode = interrupt && 2 parties in call]

In states:

- No Parties,

- Finished

a timer mechanism should prevent that

the object keeps occupying resources. In

case the timer expires, the object should

be destroyed and callFaultDetected

should be reported to the application.

ALL

STATES

getCallLegs

"answer from called party"

"requests failed"[no more outstanding

routeReq operations] ^routeErr

"routing unsuccessfull[not more

outstanding routeReq operations]

^routeRes

release

routeReq

deassign

getMoreDialledDigits[no outstanding routeReqs]

IpMultiPartyCallControlManager.createCall

IpAppMultiPartyCallControlManager.callEventNotify

IpAppMultiPartyCallControlManager.callEventNotify(answer

from called party)

"call ends : calling party abandoned" ^callEnded

release

deassignCall

"routing aborted or invalid address" / decrease number of requested + active parties ^routeErr

"network event received that was monitored" ^routeRes

"connection to called party unsuccessful" / decrease number of requested + active parties ^routeRes

"disconnect from called party" ^routeRes, getCallInfoRes(intermediate report)

"call supervision event" ^superviseCallRes

"call ends: calling party disconnects" ^callEnded

"call ends : called party disconnects"[1 or 2 parties in call AND monitor for this event] ^callEnded, routeRes(party disconnect)

"call ends : called party disconnects"[1 or 2 parties in call AND no monitor for this event] ^callEnded

"fault detected"[fault cannot be communicated with network event] ^callFaultDetected

"requested information ready" ^getCallInfoRes,

superviseCallRes

deassignCall

[no reports requested with getCallInfoReq AND

superviseCallReq]

release

"fault in information retrieval" ^getCallInfoErr, superviseCallErr

"requested information ready" ^getCallInfoRes, superviseCallRes

[no reports requested with getCallInfoReq AND superviseCallReq]

"fault in information retrieval" ^getCallInfoErr, superviseCallErr

"answer from called party"

"party released"

"party released"[no outstanding routing requests]

"digits collected" ^getMoreDialledDigitsRes

"error in collecting digits" ^getMoreDialledDigitsErr

Figure 2 Application view on the MultiParty Call object
 States

No Parties

In this state the Call object has been created. The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq().

Active

In this state a call between two parties is being setup or present. Refer to the substates for more details
The application can request the gateway for a certain type of charging of the call by calling setCallChargePlan(). The application can request for charging related information by calling getCallInfoReq(). Furthermore the application can request supervision of the call by calling superviseCallReq(). It is also allowed to send Advice of Charge information by calling setAdviceOfCharge().

1 Party in Call

In this state there is one party in the call.
In case the call originated from the network the application can now request for more digits in case the address is not yet complete or the application can request for a connection to a called party be established by calling the operation routeReq().
In case the called party was reached by issuing a route request, the application can request a connection to an additional party by calling the operation routeReq() again.
Otherwise, it depends on the actual number of invoked (and still outstanding or successful) routing requests whether the application can still call the routeReq() operation in order to setup a connection to a called party.
Also in this case the called party can disconnect before another party is reached. In this case depending on the actual configuration, the call is ended or a transition is made back to the Routing to Destinations substate.
In case there are no outstanding routing request and the application releases the leg corresponding to the 1 party in call state, a transition is made to the Application Released state.
In case there are no outstanding routing request and the application releases the leg corresponding to the 1 party in call state, a transition is made to the Application Released state.
In this state user interaction is possible

2 .. n Parties in Call

In this state a successful connection between at least two parties is established.
In this state user interaction is possible, depending on the underlying network.

Routing to Destination(s)

In this state there is at least one outstanding routeReq.

Network Released

In this state the call has ended and the Gateway collects the possible call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information a transition to the Idle state is made immediately.

Finished

In this state the call has ended and no call related information is to be send to the application. The application can only release the call object. Calling the deassignCall() operation has the same effect. Note that the application has to release the object itself as good OO practice requires that when an object was created on behalf of a certain entity, this entity is also responsible for destroying it when the object is no longer needed.

Application Released

In this state the application has requested to release the Call object and the Gateway collects the possilbe call information requested with getCallInfoReq() and / or superviseCallReq(). In case the application has not requested additional call related information the Call object is destroyed immediately.

� Contact information: Ard-Jan Moerdijk, Ericsson Eurolab Netherlands, Tel. +31-161242777, e-mail: Ard.Jan.Moerdijk@eln.ericsson.se

